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ABSTRACT

The time-averaged intensity density function of the acoustic
radiation from rotating blades is derived by replacing blades with
rotating dipoles. This derivation is done under the following turbu-
lent inflow conditions: turbulent ingestion with no inlet strut
wakes, inflow turbulence elongation and contraction with no inlet
strut wakes, and inlet strut wakes.

Dimensional analysis reveals two non-dimensional parameters

which play izmportant roles in generating the blade-passing frequency
tone and its multiples. The elongation and contraction of inflow
turbulence nas a strong effect on the generation of the blade-passing
frequency tone and its mulctiples. Increasing the number of rotor
blades widens the peak at the blade-passing frequency and its multi-
ples. 1Increasing the rotational speed widens the peak under the
condition that the non-dimensional parameter involving the rotational
speed is fixed. The number of struts and blades should be chosen so
that (the least common multiple of them)+(rotational speed) is in the
cutoff range of Sears' function, in order to minimize the effect of
the mean flow deficit on the time averaged intensity densitv function.—
The acoustic intensitv density function is not necessarily stationary
even if the inflow turbulence is homogeneous and isotropic. The time
variation of the propagation path due to the rotation should be-con-

sidered in the ccmputation of the intensitw density function;
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for instance, in the present rotor specification, the rotor radius is

about 0.3 m and the rotational speed Mach anumber is about 0.2.
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CHAPTER I

INTRODUCTION

1.1. Statement of the Problem

This study attempts to derive the time averaged far field 1
acoustic intensity spectral density function due to the acoustic 4
radiation from (1) low rotational speed rotors operating in frozen,

homogeneous, and isotropic turbulence, and (2) low rotational speed

e

rotors behind inlet struts, where the rotor is assumed to be acousti-~

cally compact. For the present analysis, the dipole source due to
blade/turbulence interaction, as computed by Sears' function, is
assumed to be predominant over other radiation sources. A rotating

dipole model is pursued so that the effect of the dipole rotation can

be accounted for explicitly in the analysis. Sears' function is
regarded as an impulse respoise function of a blade, so that the

analysis is done in a time domain and in a frequencv domain. There

is no blade-to-blade interaction to be included, such as that devel-
oped bv Xemp, et al. [1]. It is assumed that the inlet struts do not
affect the sound propagaticn and that the distance from the rotor to
the duct inlev or exit is ouch shorter than the sound wavelength so

that duct effects on propagation are negligzible.

1.2. Previous Investications of Rotor Noise

Rigorous treatments of the effect of a solid boundarv under the

influence of a volume distribution of quadrupoles, as in the Lighthill




(2]

acoustic analogy approach [2], were done by Curle [3] and Doak [4]

for a stationary boundary, and bv Ffowcs Williams, et al. [5] for a
non-stationarv boundary and a rigid surface boundarv of a moving bodv
such as that of a rotating blade with a low aspect ratio. Curle
derived the sound field as the sum of that generated bv a volume
distribution of quadrupoles and bv a surface distribution of dipoles
due to the diffracted wave from the quadrupole and due to the hydro/
aerodvnamic flow itself; but the distribution of the dipole, such as
the tangential component of the dipole on the surface, is difficult
to measure. Doak obrained the sound field for the same situation as
did Curle, but the former's result concerning the contribution from
the surface dipole is based on an easilv measurable quantity. Ffowcs
Williams, et al. obrained the sound field as the sum of that generated
by (1) the quadrupole in a volume distridution, (2) the dipole in a
surface distribution, and (3) the nonopole in a surface distribution
where the monopole is due to the volume displaced by a non-stationary
boundary. He found also that in case (3) as for the case of the rigid
surface boundary of the moving bodv, the monopole is broken into
another quadrupole and dipole.

In the Lighthill acoustic analogy approach [2], the acoustic
radiation source region is assuzed to be substantially small, because
the observer of the radiation is Iar from the source region, so that
the propagation and source terms are separable and the non-linear
effect is regarded as the source term in the acoustic wave equation.
In other words, the source distribution does not affect the acoustic
propagation or, more precisel;. the region where the acoustic field

fs to be computed does not overlap with the source region, so that no




convection effects are involved in the acoustic wave propagation.
Thus, if the linear acoustic process is isentropic, then the acoustic
intensity is computed based on the acoustic pressure.

In the Lighthill acoustic analogy approach, the existence of a
rigid bodv yvields dipole and quadrupole terms in the acoustic wave
equation. However, their relative importance is dependent on the
rotor speed, the dimensional parameters of the rotor, and the fre-
quency range of interest. In practice, there are situations where the
dipole source dominates the acoustic radiation over that due to the
quadrupole source. Ffowcs Williams, et al. [5]} and Goldstein [6]
showed the relative importance of the dipole source over the quadru-
pole source for a low speed rotor with a small number of blades, under
the assumption chat the dipole and quadrupole sources have similar
spatial and temporal scales.

The assumption of acoustically compact blades permits replacing
distributed dipole sources with a single point dipole whose strength
equals the total strength of the distributed dipoles on the blade.
Thus, each blade is replaced with a point dipole or multiples of a
dipole. Lowson [7] derived the far field and near field acoustic
pressure from a moving singular dipole source by using Lighthill's
acoustic analogy approach, where the iamportance of the acceleration of
the moving dipole was accounted for in the expression of acoustic
pressure.

As there are two interpretations of the solution of the acoustic
wave equation of cylindrical coordinates, i;e.. a rotating pressure
pattern using an exponential function for the angular variation of the

pressure pattern, or a modal pressure pattern fluctuating in time




using a trigonometric function for the angular variation of the
pressure pattern, the acoustically compact rotating blades can then

be modeled bv on-off dipoles or rotating dipoles. Homicz [8], Gutin
{9], Wright [10, 1l1], and others pursued the on-off dipole model.
Ffowes Williams, et al. [12], Lowson, et al. [13], Morfey, et al. [14],
Mani {15], and others emploved the rotating dipole model.

The rotating dipole model accounts, on the one hand, for the
fact that the distance between the observer and the rotating dipole
varies according to the rotation of the dipole, and that the direction
of the motion of the dipole varies. On the other hand, the on-off
model does not account for it because the distance between the on-off
dipole and the observer is fixed all the time.

There are two ways to get the dipole strength necessary to
compute the acoustic radiation from rotating blades: analytically and
empirically. For instance, Hanson [16] derived the far field acoustic
pressure for a compact subsonic rotor based on rotating dipoles whose
strength was derived from the pressure measured by a pressure sensi-
tive transducer mounted at a specific point on the blade surface, even
though the position of the transducer has a significant influence on
the acoustic pressure at the observer's poiant. In addition, the size
of the pressure transducer, i.e., the area of the transducer, influ-
ences the —easured data especially at hizh frequencies. Homicz [8],
Anmiet [17], Aravamudan, et al. [18], Mani {19!, Sevik [20], and other
utilized a two-dimensional aero/hvdrodvnamic function develooed by
Sears [21] in order to obtain the dipole stfengch.

The two-dimensional aero‘hvdrcdvnanmic function was developed for

a two-dimensional thin airfoil having small camber under the following

o | e




assumptions: (1) the flow from the upper and lower surfaces of the
blade at the trailing edge has no pressure jump, (2) a thin sheet of
vorticity is shed from the sharp trailing edge (Kutta condition),

(3) the thin sheet is shed along the chord line of the blade, (4) the
finite thickness of the boundarv laver at the trailing edge is not
important, (5) no viscosity is involved although the vorticity is
generated by viscous action in the airfoil boundarv laver, (6) gusts
to the airfoil are frozen (the frozen gzust assumption implies that
gusts are not distorted during the time of passage over the airfoil),
and (7) the airfoil is acousticallv compact.

Among the aforementioned assumptions, the Kutta, frozen gust,
and compactness conditions require special care when using the two-
dimensional aero/hydrodynamic function for the folleowing reasons:
although the Kutta condition has a dramatic effect on the pressure
distribution on the blade surface, as shown by Kellv [22], the condi-
tion is still being investigated [23]. The frozen gust condition
implies that the two-dimensional aero/hvdrodvnamic function is rela-
tively valid for low values of the frequency compared with higher
values. The assumption about compactness asserts that the acoustic
radiation at one surface point does not arfect the surface pressure
at others. Thus, at high frequencies, it is meaningless to integrate
the surface pressure in order to get the strength of a point dipole.

Jackson, et al. [24] compared the measured and calculated aero-
dynamic admittances which are associated with aero’/hvdrodvnamic
functions such as are ziven bv Sears' two-dizmensional theorw, bv two-
dimensional strip theory, and by three-dizmensional theory. The two-

dimensional strip theory states that the lift of each chordwise wing




element is a function only of the local upwash fluctuations at the
element, and that the lift on each strip, i.e., each element, is
obtained by using Sears' two-dimensional theory. Results show that
the three-dimensional theorv such as that of Filotas [25)] or Graham
[26] 3ave good agreement with measurements. The two~dimensional strip
theory gave gairly good agreement., Sears' two-dimensional theory
overestimated for the entire reduced frequencv range.

Amiet [27] showed that the two-dimensional strip theory is a
good approximation for computing the far field acoustical pressure due
to unsteady lift if Hkxd is larze, where M, kx’ and d are a streanwise
Mach number, a chordwise turbulence wave number, and a span length,
respectively. The most important development in his argument is that
the computed 1ift agrees quite well with the measured lift even when
kad = 1. He showed that the acoustic radiation prcduced by the
parallel gusts would be the most dominant noise source.

The two-dimensional aero/hydrodynamic functicn causes aliasing
among different wave number gusts. This is because the two-
dimensional aero/hydrodynamic function, such as Sears' function,
utilized a wave number in the direction of the chord line of a thin
airfoil. Therefore, even if the frozen gust is decomposed into its
wave number components, each component cannot be the same among
rotating blades, because the direczion of the chord line of each
blade is different from each other.

It should be noted that, since the two-dimensional aero/
hvdrodvnamic function, such as Sears' function, involves one reduced
frequencv relating the wave number of the upwash to an airfoil to a

frequencyv, then the interaction between blades and the flow

RSN




fluctuation can be treated in a time domain and in a frequency domain
instead of a space domain and a wave number Jdomain.

For the analysis of the acoustic radiation f{rom rotating blades,
there are three possible flow tvpes: (1) steadv uniform, (2) steady
non-uniform, and (3) unsteadv. Gutin [9] investigated the acoustic
radiation from rotating blades under a steadv uniform flow, i.e., a
constant lift force. Morse, et al. [28], Lowson, et al. [13], and
Wright [10, 11] tried to explain the discrepancy between Gutin's
computed results and experiments, especially in the higher order
harmonics of the blade-passing frequencv, by introducing a steady non-
uniform flow. As quoted by Lowson [29), Leverton [30] reported that
no blade-passing frequency and its harmonics appeared in the spectrum
of the acoustic radiation from a rotor under calm wind conditions.
However, a slight change in conditions caused a blade-passing fre-
quency and its harmonics. In a steady uniform and a steady necn-
uniform flow, the phase difference of the loading on different blades
can be expressed deterministically by the geometrical angle position
difference among blades. This is not the case for an unsteady flow.

Homicz [8] took the on-off dipole model as the representation of
rotating blades operating in an unsteadyv flow of convected frozen
turbulence by replacing a blade with a dipole at a representative
radial position. Sears' function was used to compute the lift on a
blade, where a reduced frequency averaged over one blade revolution
was used in order t£o get around the aforementioned aliasing phenom~
encn. He showed that the total power of the acoustic radiation from
rotating blades operating in honogeneous and frozen turbulence is

2.4 2
proportional to w'U where w™ and U are a mean square turbulence




velocity and a convection velocity of the turbulence, respectively.
He showed further that the blade-passing frequency and its multiples
occur in the frequency spectrum of the acoustic radiation when U/ (\Q)
is very small where U, 2, and \ are an axial flow velocity, a rota-
tional speed, and a typical length scale of the turbulence, respec-
tively. The smallness of U/(AQ) implies that a partially coherent
turbulence is chopped by many blades so that blade-passing frequency
and its multiples appear in the frequency spectrum signature.

Mani [15] investigated the noise due to the interaction of inlet
turbulence with isolated stators and rotors. He assumed that the
amplitude strength for each rotating dipole is equal and did not
consider the phase relation of the strength of dipoles, which should
occur for turbulence interaction. The blade-passing frequency and its
multiples in the frequency domain were assumed due to the aerodynamic
interference between moving blade rows as investigated by Kemp, et al.
(1]. He showed that the sound power level increases with decreasing
L/D where the turbulence is assumed to be homogeneous, isotropic, and
stationary, and can be characterized by a longitudinal correlation
function such as exp(-r/L) where L is the length scale of the turbu-
lence, and D is a transverse spacing between blades. He also showed
that the acoustic spectra for rotors are peaked at the blade-passing
frequency and its multiples when L/D exceeds about 0.5, and that when
L/D < 0.5 the spectra start brcadening noticeablv. However, the
parameter L/D does not taxke into consideration the contribution of the
rocational speed of the rotor and the axial Zlow velocitwv. That is,
even if L were small, a higher rotational speed and lower axial flow

velocity would create the same situation as when the length scale of




turbulence is large, together with a high axial flow velocity and

lower rotational speed.

Sevik [31] derived the sound power spectrum frem a rotor operat-
ing in turbulence. The noise source is the axial component of the
blade lift only. The sound power is computed based on the general

2 . -
relation St(u) = E{|X(w)!|°} where S_(u) is the power spectrum of a

X
x
,
)
J

stochastic process x(t) satisfving aRKx(;)da < =, where R (a) is

XX
-0

the correlation function of x(t) which is assumed to be a wide-sense
stationary process, and the correlation function does not account for
the rotation of the blade. The assumption of the correlation function
regards the rotor as being stationarv. 3ecause of the use of only the
axial component of the lift, the result applies only near the center-
line axis of the rotor. 1In Sevik's calculation of the lift of a
blade, the blade is replaced by a line dipole scurce and the idea of

a typical section is introduced, whereby the resultant velocity and
chord of the various elements (or infinitesimal strips) may be
represented by those of a single "tyvpical section"” located at some
fraction of the span of a blade. Unfortunately, the resulting power
spectrum does not predict the blade-passing frequency component and
its multiples, due to the assumption of the correlation function of
the upwash at the blades, although, as shown by Robbins, et al. [32],
the level and general shape of the predicted spectra agree with the

experimental data.

1.3. Scovne of Investization

In Chapter 11, an acoustic radiation formula is obtained from
P

the inhomogeneous accustic wave equation with rotating dipole sources.




10
This leads to the integral equation, with Green's function, of the
acoustic wave equation in an infinite medium. The acoustic compact-
ness condition is introduced, so that the blade can be replaced by a
point dipole. The time-averaged acoustic intensity spectral density
function is developed in a general form where the effect of the
rotation of the dipole is shown explicitly.

In Chapter III, the impulse response function of a blade based
on two-dimensional, unsteady, thin airfoil theory is discussed so that
the blade response to turbulence can be treated in a time and fre-
quency domain. In addition, the correlation functions of the lift on
blades and the lift derivative with respect to time are obtained.

In Chapter IV, the power spectrum of the upwash to the blades is
obtained in the following cases: (1) the inflow turbulence is homo-
geneous, isotropic, and frozen, (2) the turbulence in (1) is elongated
and contracted on its course to the rotor plane, and (3) there are
wakes due to inlet struts in addition to the inflow turbulence. The
results of Lane [33] are utilized in the derivation.

In Chapter V, the results in Chapter II, III, and IV are
combined in order to obtain the time-averaged acoustic intensity
spectrum. The condition for neglecting the retarded time difference
among the lift of blades is irntroduced. Furthermore, important non-
dimensional parameters are introduced so that the effect of the
various turbulence properties and the rotcr geometry and operating
condition can be determined.

In Chapter VI, computations are done according to the results in
Chapter V such as Eg. (3.1%) and Zg. (5.22) by changing the number of

struts and rotors, the spacing between struts and a rotor, the
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observation angle, and non-dimensional parameters such as U3/ii1 and
RT/Ai. In particular, the variation of these non-dimensicnal param-

eters are made around an axial flow velocity of U3 = 30 m/sec, a rotor
radius of R, = 0.30 m, a rotor rotational speed of % = 220 rad/sec,
IS

an inflow turbulence length scale of li = 0.15 m and 0.017 m, and a

wake turbulence length scale lw = 0.0068 m.




CHAPTER 11

ACOUSTIC RADIATION FROM ROTATING DIPOLE SOURCES

2.1. Introduction

There are two tasks necessary for analyzing the acoustic radi-
ation from rotating blades: (1) obtaining the 1ift on the blades due
to the interaction between the rotating blades and turbulence in a
flow, and (2) obtaining the radiated sound from the lift. In this
chapter, the acoustic radiation due to lift om the blades is consid-

ered, based on the Lighthill acoustic analogy approach.

The analvsis of the acoustic radiation from rotating blades
begins with the inhomogeneous acoustic wave equation developed by
Lignthill [2], together with the boundary condition imposed by the

blades. The implications of emploving the Lighthill acoustic analogy

approach are as follows: (1) the observation point of the acoustic :
radiation is far from the perturbed region so that the propagation and
source terms are separable in the governing equaticn for wave propa-
gation, and (2) the medium at the observation point is assumed to be
at rest. The quiescent medium and the assumption that the acoustic
process is isentropic simplify computing the acoustic intensitv.
The Lighthill acoustic analogy approach leads to an integral
equation, with Green's functicn, for an infinite medium where the
integration is done over three spatial dimensions and one temporal

dimension. Here, the time is regarded as a parameter; i.e., the so
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called retarded time concent is emploved. However, because of the
existence of the boundarv suriace imposed bv the bdlades, Green's
function of the acoustic wave equation in an infinite medium connot bde
used without modifving the boundarv condicticn with a Heaviside
function. The modification creates new source terms such as monopole,
dipole, and quadrupole sources. However, the acoustic wave equation
modified bv the Heaviside function yields the same Green's function as
in the wave equation of an infinite medium, so that the wave egquation
with boundarv conditions can be solved wit-out seeking a new Green's

function.

2.2. Inteeral Eguation for Acoustic Prassure

Farassat {34] showed that the surface on a moving bodv can be
treated as a point dipole source whose strength is equal to the total
force on the virtual radiation surface, when the following relations

are satisfied:

and T >>

[l
[ R

s (2.1)

where Tp’ Ty o and L are the characteristic time scales of the
T

pressure, the Mach number of the blade rotational speed, and the

length scale of the virtual surface.

Thus, the acoustic wave equation to be solved for rotating

blades is

where




N R
L Lmn(r):(;—dr—tm):(_)i(R—Rn*f;" (2.3)

Fig. 1 shows the configuration of the relaticn between the rotating
dipole and the observer's point, where spherical coordinates and
cvylindrical coordinates are used for the observer's point and the
rotating dipole, respectively.

With the aid of the fundamental solution of Eq. (2.2), i.e.,
Green's function of the acoustic wave equation in an infinite medium,

one obtains

la’,r'r - . 0.1 .
r, 3 = = . 7 +f)i(c-t+—)=RdRd >dZd~ 2.4
Plz.3,0,8) = = ,;Jz ‘ (7,+0) H(z-t+)5RdRA 2dZdT (2.4)
-o  Vol.
where
2 2 . . . 2,172 -
D= (r” + R” - 2rR sinsy cos(3-3) = 2rZ cos> + 27) (2.3)
= r - R siny cos{(3=3) - rZ coss . (2.68)

The integration in £q. (2.34) is within the stationary reference frame
fixed to the center of the rotor plame. 3y introducing a reference
frame rotating with the speed of the rotor, i.e., 2 = 2?+Pm, one

obtains the following equation,

P(r,3,5,t) = 7£-Tfff P - Xirdrdzas (2.7)
S o1, ° ad
where
P N (2.8)

Using the relation T+(gf) = g7+f + f£+7g, where g and { are scalar and




Observer
(rsinocosvd,rsinosing,rcosy)

Source
(Rcos?,Rsin,2)

Fig. L Observer/Source Coordinates




vector functions, respectively, one obtains,

6(r—c+g)
a

D

SGrettd) L s(e-te)
) = ——=2 7.F 4+ fo7

5 — D - (2.9)

reg

7e(

Utilizing Eq. (2.9) in Eq. (2.7), and using the fact that

s(rmeh) S(r-er2) _
[ 9 Dav =] ——nds = 0, (2.10)
Vol. Surface

because there alwavs exists a surface where ? = 0, one obtains,

L% g S
P(c,2,5,t) = = == f+¥ (————)RdRd3dzd~ . (2.11)
bﬂ_m Vol 0 D

Taking the zradient of 3(t-t+D/a)/D, then Eq. (2.11) becomes

L - 3 (emetd)  5(r-eed)
P(r,3,0,0) = - 7=/J] [ )i - -
an Vol, - ° ab D2
RdTdRd3dZ , (2.12)

where the interchange between dt and RdRd*dZ is possible because the

integration is within a rotating frame,

('JOD)‘2 = (R - r sind cos(3-%))/D , (2.13)
(v,0); = (-r cos> + 1)/D , (2.19)
(TDD)‘ = ~(r sin> sin(3-2))/D , (2.13)

and
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5 d{s<r_t+§> ;
(T-t+;) = ———————Er——- . (2.16)

T=t+—)
d(- c*:,

Eq. (2.12) is a general expression for acoustic pressure due €0

a distributed force, and it includes the pressure In the near and far

fields. In the following section, the term Sor the far field pressure

is extracted from Eq. (2.12).

2.3. Far Field Acoustic Pressure

Utilizing Eq. (2.3) in Eq. (2.12), and integrating with respect

to dR, dZ,

and d-,

L 2} R f'(r—c*—%g)
- Z o — b)) - 7 N .
Plr.z0) 4w <" - (Zmn :Dmn)“Qn aD
- m=1 n=1 mn
Dmn
G(T-t+—:—)
- — dz , (2.17)
2
where
Dmn = r - Rn sins cos(2t+>m) , (2.18)
r sino sin(Qr+¢m)
(VoDmn) = ) , (2.19)
mn
mn
and
Rn - r sin? cos(lt+¢ﬁ)
(7ODmn)q = ) . (2.2

on

In the above equation, 2 = 0 is assumed, because the transient

pressure is not considered here, as seen from the integration range

of t in Eq.

(2.17). Now, integrating Eq. (2.17) with respect to Tt
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and imposing the condition for the acoustic far field, 2wr >>

wavelength (Appendix I), then one obtains

Plr,5,t) =

Utilizing Eq. (2.18) in Eq. (2.22), one obtains

B N, AR
n

4mar m:l n;lL R =
1 + —=sind sin(l7t+9))
3 2 z 2
almn SZmn A
{ — sins sin(lx+? ) - ———<oss+ L~ 2 sin: «x
3T m 3T mn

P(r,s,t) =

-

{ ST+ -
[cos( m)

nyo

sin:
n ?
R 2 sin? cos(lt+2 ) sin(lt+ )
n o m

R - g

n
a(l + sins sin{lt4?
( a > v ( m))
sin(lt+?
A A . . (ot m)
+ i R 2 cosy sind ¢
mn n r

2 cos(lt4+r )
+ = LS : }} , (2.23)

a(l + = sinsy sin(2t+v )
a o

) vA - R ,
where 2 and 1 are the 2 and Z component of L_ (t), and 2 =0 is
mn mn mn mn

assumed on a blade.

Furthermore, inposing the condition for the geometric far field,
r>> Rn for all n = 1,2,...,Y, and because the time history of the
pressure is not considered in the present studv, one can neglect the

teras with Rq/r in Eq. (2.23), vielding
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p(r’\?vt) = z z R . -
m=1 n=1 4rar(l + 3ino sin(37+?m))
2
IN nf

mn :
{ = sins sin(2t+d
aT m

9 .
+ 27 2 sing cos(Rt+? )
mn o

) " mn cos?
3T

1

R_.

n
+ — 3si in (2T
R 2 1 -~ sino sin(Go+d )
sin? cos(it+v )
Z
+ lmn.?. cosoY R 3 m }} . (2.24)
n . i
where 1+ —= sinp sin(2t+? )
T =1t - Dmn/a .
Introducing 19 (r) = - 2_ (1) sin2 and LZ (1) = 1 (%) coss
mn mn on an mn an’

-
where Lmn(r) is assumed to be normal to

airfoil, and Imn(r) is obtained by Sears

Eq. (2.24) becomes,

the chord line of a thin

' function (see Fig. 2),

AR
n

P(r,s,t) =

mn . .
{- sind__sinc s
T an

R - ,
+ — si in(ot+? <
(1 S sino sin( m))

p x

3L

. mn .
in(Rt+d ) - — cos3 coso
o oT mn

Dr4d
cos( m)

~ 2 7 sin3 sind
mn on

+ 2 2 cosi__cos>
an an

«

R 2
n

— cos
a

R 2
n . . A
1 + — sin? sin(lt+2 )
a m

sind x

(x40 ) \
m ]

Rnl
1l + — s5in
a

, 2.1
| (2.23)

> sin(lT+ )
m

Eq. (2.25) is an extension of the result of Lowson (7] and

— e ,,______....u...__.._‘~ el
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Morfey, et al. [14] which deals with the acoustic radiation from a
moving point force. As will be shown below, this relates the acoustic
intensity spectral density function at the observation point x with
the power spectral density function of the turbulence experienced by
rotating blades calculated by an aero/hyvdrodvnamic function.

As shown in Eq. (2.23), the variation of the distance between
the observer and the blade on a time axis causes a phase modulation in
lmn(t) because T = ¢t - Dmn/a. Furthermore, the variation of the Mach

number of the blade velocity in the direccion of the observer, i.e

(Rnﬂ/a)sinosin(27+>m), behaves as an amplitude modulating signal of
lmn(r) and ;lmn(r)/ar.

The Fourier coefficients of the modulaticn terms are derived in

Appendix II. The following is the final result taken from Appendix
IT:
ST+ © Igl 2 1
cos( m) . : -ip (»P;Rn 51no::pi )
Ran 3 p=-= Rnfé > 2a 4
. . :-: +A = . .
1+ — simd sin(lt bm)) — sind
s A T
er(ur+¢m+7\
—_—, 2.26
r(ipi+1) ( )
|
©® o R 2 sin¢ ,
1 N Ll Sl SLI RN
Rq"z 2 Ze® q=-=® 2a J
1+ —:— sind sin(ﬂt+>m)) P q
. i
lq|R_2 sin> eJ(p+q)(ﬁr+bm+-;)
(—— ) q ' (2.27)
2a ’ TOpi+l)7(,qi+ly
v £l - ¢
sin(u\+3m) o > 5o 1 )
.ni 5 p=:m q;-x Rn;
(1 + —— sins sin(it+5)) —— sin»
a m a
'pIR_2 sin: - "q@iR 2 osins o, JJ(p*rq) (D14 _+]
’.p|Rn sin p. (,q{Qn sin i Jpra) ( o Y)
la ! 2a ’ TGpi*)TCqi+l)
(2.28)
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where the approximation is made for Jp(z) (l/p!)(z/2)p in Ref. [28].

Hence, the higher order terms can be neglected for small (Rnﬂ/a)sin@.

2.4. Acoustic Intensitv
One can rewrite Eq. (2.25) as follows:
B N ® 32 . T
S, P)Ymn _ L. (p), 2y _Jp(Qr+d 45)
2 —— ° ——— Q 3 ! 2
Plo,3o0) =gy & L 8 (emn It I tan’ n
. m=1 n=1 p=-=
) (2.29)
where
1] 1]
e(p) = -b(p)sino sin2 - a(p)coso cosi . (2.30)
mn n n mn
L3
f(P) = sing(coss cos3 - sing )c(p) . (2.31)
mn mn on’ n
' ‘]piuR sing
Y. o n” lel L (2.32)
n RnQ 2a [ (p+1)
= sin%
®» = lsirR 2 sq . JkIR_3 sino |
a(p)‘= : ; (.sg n 51n3li5i lk| a SIHJ\IR{ )
n : _ N 2a J Za )
SE=—~x ==x
L - s +k (2.33)
T(isi+L)I(jk+D) ° p=s ’ .
and
@ - ! a i I ! - 5
b(p).: ; : s 1 :.szn" sino !3| ,k|Rnu sind [k] .
n R . 2a 2a
g==® k=-» 1 i
— sin9v
a
l 1 I3
, p=s+ k. (2.34)

T(s. (K +1)

Utilizing the following definition of the autocorrelation func-

tion of ¥(r,;,t),

(2.35)

r * Al
C{.(r.:.:.z) = 20?2 (r,:,0)P(r, s, t+a)
'

-
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one obtains

) 1 B XN B N = © ( )
R(r,s,t,a) =———— £ L T I I z’ﬁm‘i{(g (1,2) x
1677a"r” m=l n=1 x=1 i=1 p=-» q=-=
o1 (a-p) (Rt+3) =3 (q¥y-p2 2+iqta
(2.36)
where
32 (1)
(¢,9) o of . an e (P), L
éimnkl (r,2) = D{temn 3T it on Lmn(‘)) )
32 (7+3)
(q)“an (R, ,
(ekL = spe Ve (o)) (2.37)
The instantaneous acoustic intensitv is ziven bv the following
relation:
- A 1 ¢ A -% A \ "
I(rvay“’t) =ERe'r_?(ry¢""t)u (f,:,«,t)[ * (-'38)
where the acoustic particle velocity ;(r,;,e,t) is given by the
gradient of P(r,4,t) as follows:
- P> p > 5P o=y 1
29,2 = lg- i + = + == i} — , .
u(r,s,3,8) = (371, 5 b T 15 53 T (2.39)
As r increases, :(r,;,i,t) is dominated by u_ which is the r-
component of u. Thus, Eq. (2.39) beccmes
- P -
('.', |5§ T ——_ . ,
s > £) juwocr T (2.30)
Hence, the acoustic intensitv at a larze distance r is given by




*
b7

Rel

(NI

I(r,7,9,t) = I_(r,5,3,0) = . (2.41)

[0}
[+

YNow, taking the expectation of the above intensity, one obtains

. ) * N
E(I_(r,5,3,0)= 5 Rel 209(r,5,2,0F (r,9,3,0)}) . (2.42)
Since the pressure in Eq. (2.25) is real, Eg. (2.42) becomes
E(L (r,5,9,8)} = == E17°(r,5,3,0) (2.43)
~ r t ’ ’ ‘ zsa AN r ’ ’ -
Eq. (2.43) is equivalent to fi,?(r,b,t,l)/:a when 1 = . Consider
the following pair of Fourier integrals:
Pt e—j;;cx
W) = 5 e 2,40
SJ'P(r’Q,c’J) J-Q\R?F(ryvyti*)) oa aa ( "-‘)
and
) - oar , jwa .
ﬁw(r,a,t,») 5 i«, Spp(r,o,t,w)e” da . (2.45)
Thus, from Eq. (2.36), one obtains
E(I_(r,5,0) = = fm Spp(r,d,t,0)dw . (2.46)
r * b -’4‘;.’ J-m PP ’ k4 *

accordingly, S;P(r,Q,t,J) can be regarded as an instantaneous

intensity spectral densitv Zfuncticn.

Hence, by takingz the x2-Fourier transforn of Zq. (2.36), one i
obtains the following instantaneous acoustic intensity spectral

densitv function:
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1 B N B N = ®
Spy (T22,8,2) = - - T ¢ . & © ¢t
! 32-7:a"r” m=1 n=1 k=1 =1 p=-= gq=-o
a i (q-p) (St4m)+i -pt
Siili)(f,s-ql)e1<q p) (e F)rilar -ed ) ,
(2.47)
where
(P,q) - . - "m (p,C) - ‘j""’a 2
Smnkl T,w) = imgimnkL (t,1)e da . 2.48)
When R;iig)(r,a) is stationarv, Eq. (2.47) becomes,
B N B N » ©
1 -
S?y T,3,C,w) = T35 ot T T z z T
‘ 32=75a7r” @=1 n=1 k=1 i=] p=-= g=-»
S(pfq)(m-ql)ej(q-p)("t+?)+j(q'k-p°m)
mnk L
(2.49)

Assuming S.,(r,?,t,») is continuous and finite with respect to t, and

taking a time average of Eq. (2.49) over 27/, one obtains

1 B N B N ®
(Spp(ras,tyw) = —5——5 - I I © 1I
3277za7r" @=1 n=1 k=1 =1 p=-=
(p,2) Sy iple, =0 )
smnkL (u=pl)e x @ . (2.50)




CHAPTER III
BLADE RESPONSI TO FLOW FLUCTUATION

3.1, Intvoduczion

In Chapter II, the acoustic intensity spectral density function
was derived under the conditions of compactness, i.e., the virtual
source size of the rotating blades is equivalent to the phvsical si:ze
of the blades, and the variation of the radiation time over the blade
is very small compared with the time scale of the surface pressure of
the blacde so that the instantaneous radiations from various parts of
the blade reach the observer simultaneouslv. The acoustic intensity
spectral density function involves the computation of the power
spectrum of the lift on a blade. The present chapter considers the
derivation of the impulse response function of a blade based on a two-
dimensional, thin airfoil thecrv, and the power spectral density
function of the lifr by emploving the correlation function of the flow
fluctuacions.

With the aid of the resul® by Jackson, et al. {24], the three-
dizmensional interaction between nlades and flow fluctuations can be
approxizated v a two-dimensioral strip theorv using Sears' function.
The lift on each strip is obtained in order to zet the impulse re-
sponse function of each strip. The Iwo-Jimensional strip approach
inposes the restricticn that the acoustic radiation due to parallel

gusts (the spanwise wavenumber is zers) is dominant, as investigated
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by Amiet [27]. Utilization of Sears' function imposes the restriction

e vt L ot AL

that the mean angle of attack is so small that the effect of the flow
fluctuation parallel to the chord line of an airfoil can be neglected
as a seccend order effect. Hence, our concern is with the response of
a thin airfoil with zero mean angle of attack to an upwash velocity
fluctuation, where the airfoil is assumed to be lightly loaded.
Furthermore, since it is assumed that the frozen flow fluctuation
pattern is convected, there is a one-to-one correspondence between
frequency and wavenumber. In addition, the blade-to-blade interaction

is not included in the impulse response function of a blade.

3.2. Transfer Function of Blade

In general, a flow velocity fluctuatiun with convection velocity
Ul can be expressed bv the following, four-dimensional, Fourier trans-

form pair:

@ - =
> - , p— RS O PR M) 1
V@0 = =2 [I1R0 ik aka,wed VT RU I T e dkdk
4 ‘ 1 < 3 1 < 3
(27) -
(3.1)
and
¥ R (U ) 7 5
Js Y = [[[IV(5 <ye d-&ymi W) :
Ay kyky,w) fi;,V(y,~)e 1°17°7 “dedy, dv,dy, ]
(3.2) |
, ;
; When the Zlow has a property such that . << klUI in Eq. (3.1),
Eq. (3.1) becomes
: ooy 2 1 frf' T v j(z°;+k.8 1O I
V(v,t) = — i) A(k, ,R4,5,,0)e 171 “dudk,dk,dk
b R T i - J 1 - 3
(27)" -
(3.3)
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Since ! A(kl’kZ’RB'J)d“ = A(k ,kz,k3,f), when - = 0, Eq. (3.3)

beccmes

- s pe - P (ke e+l C.T
V(y,) = —=— T[] Z(k., %0 k., 720) 2" e by )dk,dk7dk, ,
(,,_ b ‘—aa L - 3 & < 3
(3.5
- 1 :f - 2T
where A(X),%q.%q,7) = 35 ;\(kl.k:,kB,J)eJ‘) du. Hence, kU, >>

is equivalent to a frozen velocitv fluctuation pattern, since

e . 4 . - -
A(kl,kz,k3,7=0) is the wavenumber spectrum of the velocity fluctuation
at an initial time t=0. In other words, the frozen velocity fluctu-
ation pattern assumption is valid when the twpical time scale of the
fluctuation with no convection is much larger than that of the frozen
fluctuation with convection.

Due to the frozen fluctuation pattern assumption, the Fourier

eJKlLW‘

component of the temporal variatiom, i.e., 1, can be related to

-

it
- . . . Koy -
that of a spatial variation, i.e., eJ ©, threcush ‘1' Thus, a one-to-

one correspondence exists between the Irequency and wavenumber domain,

i.e., klUl and kl.

In addition, the above restriction, 4 << k. U., can be relaxed
171

because in the computation of the lift on a blade it needs only be
assured that the rtemporal variation is negligible during the convec-
tion time for the fluctuation o pass thrcugh the blade.

Assuning linearized, small perturdbation analvsis of the thin
airfoil response to a frozen velocity Ifluctuation pattern, with a
convection velocity Ul in the 7y direction, 1s shown in Fig. 3, the
response can be expressed by the sum of the response to each Fourier

component A(kl,kq,kz)eJ(K'y+Kl°l'), “here A(kl,kq,kJ) implies
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3,r = (0). The lift on a blade with a spanwise length b and

a chordwise length ¢ can be given bv the following integration,

(k V+k u T)

(k z)A (k) e- 1 3(;3)dydk ,

(3.5)

- =
where G3j(k,y) is an aero/hydrodvnamic function in tensor notation.

Neglecting the 1lift due to the velocity fluctuations parallel to

the blade surface, because of their second order effect, and assuming

- -
incompressible flow so that k and A are orthogonal each other, one

obtains

© c/2
NOREITEN
- -c/2
The integration of Eq. (3.
o /2
=0
-0 -c/2
By assuming 633(£1,&2, ¥

[ 63 E a0

6) over Y3 vields

- -+
Gy (kyyy, A4 (k)

Yty ,+k U T)

l (v )dvdk.
(3.6)
272 7171 dyldvzdk . (3.7)

Y10Ya ,) to be constant over the blade span,

and not considering edge effect (the tip of the airfoil), Eq. (3.7)

becomnes

@ c/2 b/2 . .
2.(7) = | Gar R,y )A (k) x
3 jJ -c£2 { 2 33 vo-
2tk 1‘)dyldy,dk . (3.3)
wmcallie i “M
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Integrating the above equation over the blade span from -b/2 to +b/2,

one obtains

1,(0) = fiTc (& EEPES ()2b sine(x be ey +lelT)d ldk .

(3.9

If k,b is very small so that sinc(k7b) becomes approximately 1 or,
equivalently, the typical length scale of the flow fluctuation is much
longer than the blade span length, then integrating Eq. (3.8) with

respect to k, vields

2

- 1] f Gyglkyokgay)ag iy kp=0,k5)

-0 _C/')

s 0
aped ey ¥ U T gy y dk dk, (3.10)

- g
Since k and A are orthogonal, and the airfoil is very thin in the v

-3
direction, G33(kl,k3,yl) is insensitive to k3. Thus, integrating
Eq. (3.10) with respect to y,» one obtains
2,5() = 2bH(x)) ,&;A3(kl,k3)ejklulT dky (3.11)
where
c/2
HO) = ) Gy e kv dv,

=-C/ -

Eq. (3.11) shows that H(k,) can be replaced with Sears' function
A

for a two~dimensional thia airfoil. The function is given bv




k,c k,c k,c k,c
N NN RIS BR A
H(k.) = woU.c = = = (3.12)
1 1 k,c k.c
H(l)(—l—) 'H(l)(—l—)
1 2 R )
Its approximate form is
klc 72
_j a (1- = —,Zl"'". )
H(k)) = moUc &2 e’ k20, (3.13)
vl + wklc

where this approximation is done, not by taking the limitation of

Eq. (3.12) as kl increases or decreases, but rather by observing that
Eq. (3.12) can be approximated to within a few percent over most of
its range. This approximation of the amplitude was done by Liepmann
[35], and approximation of phase was done by Giesing, et al. [36].

The integration with respect to k., in Eq. (3.11) yields the

3

contribution due to the upwash at 7y = 0, so that A3(kl) can be

obtained by measuring the upwash of the airfoil at ¥y = 0, where

= [ Jkoy - . .
A3(k1) f_m A3(kl,k3)e 373 dk3 at v, 0. By using the notation

A3(kl), Eq. (3.11) becomes

Y = . jk,U, T 4
13(.) ZbH(xl)A3(kl)e 171 (3.1%)

In the above equation, H(kl) can be regarded as a transfer func-

; . c . . . . ik,U, <
tion for the response of a thin airfoil whose input is AB(xl)eJ iI"1l.

Furthermore, since klUl can be regarded as an angular frequency, H(kl)

and A3(kl)eJ‘lLlT can be written as H(&/Ul) and A3(J/Ul)e3ur

’

respectivelv, where o = klUl' The implication of Eq. (3.14) is that

there is a one-to-one correspondence hetween 1 wavenumber and an
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angular frequency, that the airfoil can be treated in time and fre-
quency domains instead of space and wavenumber domains, and that
Sears' function can be regarded a3s the T-Fourier transfora of the
impulse response function of the airfoil.

Accordingly, Eq. (3.14) vields the following convolution

integral,

«
2,(7) = [ h(z-2)u(a)da-2b , (3.15)
-
where u(a) is the upwash measured on a time axis.

Finally, since Za(r) is obrained bv integration over the entire
airfoil or the strip of the airfoil so that the airfoil or strip can
be replaced with a dipole, the upwash on the integration area has to
be well correlated so that the dipole can represent the lift on the
integration area. As an important result, since the lift is obtained
in a2 time domain and in a frequency domain, Eq. (3.14) becomes insen-
sitive to the geometrical orientation and/or position of the airfoil
explicitly, although the upwash includes the geometrical information

implicicly.

3.3. Correlation Functicn of Lift and its Time Derivative

Adopting the model discussed in Section 3.2., one can obtain the

following 1lift at the nth strip of the nCh blade,

1 (7)) = | hAn(f-h)u‘n(*)dw-LRn , (3.16)

where Eq. (3.15) is utilized, and u_n(f) i{s the upwash at the nth

e

0T R
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h

strip of the mt blade. Hence, the correlation function between

lmn(r) and &, (1), where k and 2 denote the kth blade and Zth strip,

ke

respectively, is given by

22

* .
mnkl(r,a) = E{lmn(r)lkl(r+a)r . (3.17)

Utilizing Eq. (3.11) in Eq. (3.17), one obtains

-]
22 * uu .
mnke (T2 = L{ B (1182 (Mg (237150 Ddn dn) 2R 3R,
(3.18)
By taking the a-Fourier transform of Eq. (3.18), one obtains
22 S uu ,
smnkl("w) = Hmn(w)ﬂkl(w) Smnkl(r'w)ARnARL . (3.19)

The correlation function and the spectrum of Zmn(r) and
ikz(r) as well as those of Jlmn(r)/sr and 31k£(r)/ar are needed to
obtain the autocorrelation function of the acoustic pressure at the
observer point. By taking the time derivative of Eq. (3.16), one

obtains

almn(T) ? 3.
= — il Sal L - PR ha)
ppn 3 hmn(- ),umn(.)dn R (3.20)

Eq. (3.20) shows that the tizme derivative of lmn(r) can be regarded as
the output of the system whose izpulse response function is Fhmn(r)/‘n

Therefore, one cbtains the following bv the same method as used in

obtaining Eq. (3.19):




22’ * uu
T = i ) T,w)AR 2 .21
Smnkl("w) Hmn(w)J,\,Hki(J/SmnkL( ,uJ)L.Rn RL s 3 )
2'2 I aw nn
smnkl(r’”) = -Juﬂmn(u)HkL(d)Smnkl(L,~)_Rn_RL , (3.22)
and
2'2! _ 2% uu R s 2
Smnkl(r’d) = w dmn(.u)HkL(.z)SmnkL(T,\.))._‘Rn_RL , (3.23)

where ' denotes the time derivative of the life.




CHAPTER IV

POWER SPECTRUM OF TURBULENCE INTO ROTOR

4.1. Introduction

As shown in Chapter II and III, the power spectrum of the inflow
to a rotor is necessary in order to obtain the acoustic intensity
spectral density function of the noise radiation from the rotor. The
present chapter deals with the power spectrum density function for the

upwash at rotating blades with and without inlet scruts.

For turbulent flows with no struts, two cases are to be consid-

ered: (1) the turbulence is homogeneous, isotropic, and frozen, and

(2) the turbulence in (1) is elongated on its course to the rotor
plane. The second case is pursued to obtain results for practical
situations where the eddy to a rotor is elongated, i.e., anisotropic.

For turbulent flows with struts, it is assumed that: (1) the

turbulence in the non-disturbed ianflow and wakes behind the inlet
struts can de treated as in the case with no struts, (2) the wake
turbulence is statisticallv independent of the non-disturbed inflow
turbulence, (3) the turbulence in each wake is statistically independ-
ent of that in other wakes, (%) the randem variables, such as the
center position and width 2f 2ach waxke, are gzoverned bv uniform dis-
ribution functicns where these rindom variables are statistically
independent of each other, and (3) no overlap occurs among wakes.

Furthernore, in the situation with inlet struts, the mean flow
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velocity defect behind vanes and the stator-rotor interaction due to

potential fields, such as were investigated by Xemp, et al. [37], can
be regarded as a steady non-uniform flow. A deterministic function

is introduced in order to take this into account.

4,2. 1Isotropic Turbulence with No Struts 1

In statistically homogeneous and stationarv turbulence, the
& B . -
correlation function of the turbulence velocities, ui(pl,tl) and

uj(sz,tz) where i,j = 1, 2, 3, is given by

{ * > > 3 quiuj be /
Elui(ol,tl)uj(az,tz), =( 12 (p,2) , (4.1)

- e -
where 5 = 81 " %, and x» = tl - t2. Furthermore, by assuming frozen,

isotrupic turbulence, Eq. (4.1) becomes

* - - uiuj d
It Yoz ) Sy L2
E~ui(pl)tl)uj<02,t2)i le (|Q\) ([‘ )

Under the above assumptions, i.e., that turbulence is homogeneous,

frozen, and isotropic, von Karman, et al. [38] derived the following

correlation function:

where ( : ) is a longitudinal zorrelazion «oefficient function

defined bv
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and u” is the mean square value of three components of the velocity,

ul, uz, and u such that

3)

22 _"2_ "2
u® = ul = uh =g (4.6)
throughout the homogeneous and isotropic velocity field.

Furthermore, in an inccmpressible fluid medium the two corre-
lation coefficients, g(igl) and f(l;i), have the following relation

as shown in Ref. [39]:

- - 131 36('3H .
(3D = £(3) + 5= %.7)

Now consider the correlation function of the upwash at rotating
blade under the following assumptions: (1) an incompressible fluid
medium, (2) frozen turbulence pat:iera convected with an axial flow
velocity U3, and (3) homogeneous 3nd isotropic turbulence, see Fig. 4.
Under these assumptions, Lane "33! derived the correlation function
of the upwash at rotating blades provided that the longitudinal

-

- -, = + -
correlation coefficient £(,:,) is assumed to be




Sajveuyproo) Haow‘:::ﬁxo ufy 1o3joy ‘b .wr_

X

$

N




>

£C'5]) = expi- 221 (4.3)

AT
i

and utilizing Eq. (4.3) and Eq. (4.7).

The upwash correlation function derived by Lane {33] is as

follows:
2 o(a) F(a) » 15 ,
Rz @ = v {E®A - 21, )+ 25(3) rexp(- Ai) IR CEEY
where
9 27 (%w 2
E(az) = cos™3 + cos(la + :%E)—)sin“s , (4.10)
hal o AP
F(a) = (U a)zcoszi + R R .sin"3 sin (Ja + :liz—ﬂl, ,  (4.1D)
3 mn K2 B

and

2 2 2 2 A 27 (k=-m)
= ‘ + - IR o —m——) (412
o7 (a) (U31) Rmn + Rki Rmanzcosk a B Yy J(4.12)

The stagger angle 3mn is approxirmated by a constant, 3, for all m
and n. In other words, the variation of the blade twist 1is assumed

to be small.

Eq. (4.9) can be writren in terms of non~dimensional

variables, so that

— ol(z) F.o(3)
B () = O R 221(1);@3(- 21, (41
where
ULy (R: 2RI R :
9£(1)=‘,;+iin*,.{“‘-:n« .
Loy Vi i L
i 2-(x-7) P
cos (. :}H—‘—B——) N (%.l*)
and
:U3:13 5
F.(2x) = —— cos i +
l (.l}
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Now consider the case that R = Rk = R for all m, n, %, and
on 2

2. Eq. (4.13), Eq. (4.14), and Eq. (4.15) change as follows:

- 2, (%) Fo(z)
Roe (@) = uw™{E(s A - 12 ) ,Dl oyte oy (4.16)
1
where
U,ay2 2
2 L T (R~ \
p-(a) = [~2—- + 2(£L~ ‘1 - cos(fa + 2——(-—-—‘11-): , (4.17)
1 A (A, ) B
i i
and
U,y 2 o2 5 _
F,(a) = 'fl— cos 3 + ?ij sin"2 sin (Ta + 27 (k m)) . (4.18)
1 tx\i) A\i} B

4.3, YNon-isotropic Turbulence with No Struts

It was shown by Ribner, et al. [40], based on the continuicy
and conservation of angular momentum of fluid elements, how a
contracting flow changes the incoming turbulence spectrum and its
intensitv and length scales. This tvpe of contracting stream occurs
in the flow into a stationmary rotor. However, in attempting to apply
this result, the spectrum obtained in a wavenuxber domain is very
difficult to convert to one in a frequencvy domain. This difficulty
arises because of the rotation of the blades and because the frequency
is a function of the angle bYetween the wavenumber vector and the blade
stagger angle orientation.

Furtherzore, Chandrasexhar {41] shcwed that the gzeneral form of
the velocity correlation tensor Ia an axiswmmetric turbulence can bde
expressed bv two arbitrary scalar Iunctisns. However, the tasx of
obtaining the arbitrarv scalar functicns constituting the correlation

tensor is difficul:s due to the fact that =he power s

8]

ectral density




! function of the corc-elation function must satisfvy the non-negative
condition. For example, 1s pointed out bv Kerschen, et al. [42], the
; restrictive condition is not satisfied even bv selecting a one-
i dimensional correlation function, such as an exponential function.

Since the treatment of the isotropic turbulence has been done
kinematrically and geometrically in Section 4.2., that treatment is
extended, according to Ribner, et al. [40], to the turbulence ingested
by a rotor. The inflow turbulence scale is assumed to be modified in
the following manner:

& » X -3

15 (%) 20¥y) =

N 2 / q
lj (Yxl"(XZ’UXB) » (“-l—)

where the superscript "in', 3, and v denotes the inflow isotropic
turbulence, the turbulence elongation rate, and the turbulence con-
traction rate, respectively. The above assumption asserts that the
statistics governing the inflow turbulence are not changed through the
flow contraction but that the shape of the domain of the statistics is
distorted. 1In other words, the isocorrzlation contours are distorted
through the flow contracticn.

The correlation function of the upwash between two points (a,n)

and (x,2) in a contracted flow field is given by

— c,(2) F,(a)
uu in 20, 2 2 -5, (2)
( = [ - 2 / .:
A a3 = (W) { ,(2) (1 )+ T, 2 , (4.20)
where
(Cyn2 5 R o 2+ (k=) «
F (1) = . —— «cos : + S 3in I sin” (Ca+————) , (4.11)
- k‘.‘.i) /—-\-T B
1
2 . 2= (g 3
E,(3) = cos™3 + cos(la + 220y Sin” s . (4.22)
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and
2 2 )
oz(a) _ U33}' {Rmnwh (Rk v ,RmanL cos (a + Zv(k-m))
2 SAij (v, (vAl' vzl? B
B (4.23)
When Rmn = Rk = R for all m, n, k, and i, the above equations become
—_— D, () Foia) s
uu in, 2¢ 2 2 -0 {(a)
; = ; ; - ) 4.4
Rania @) = (D7 (E (D1 = 55+ grmyfe ™2™, 420
where
U,av2 2
2 2 -
F (a) = f,3 ! cos 3 + (~§': sinZSSin"(Za + 2115—21) , (4.25)
2 L3, LYA.) B
i i
2 Y1 (k-
Ez(a) = cos 3 + cos(la + 311§—El)sin23 , (4.26)
and
U,ay2 ~2
2, _ [03ns RS R 2= (x-m). .
py(a) = G + 27 {1 -~ cos(Ta + 3 )7 - (4.27)
i i

4.4, Power Spectrum of Upwash with Struts

The upwash to blades operating downstream of a set of struts is

assumed to be expressed bv the following equation:

- 5-1 . 2zo _ %;s . 2m _ .
umn(') ={1-¢ I Rect: ~ ;' 4B pom)}u;n(t)
’ p=-= =0 pqm
o  §-! T - 3;2 - 2%? + ;;3 -t
+ = L Rect: — J -8 ocm;uq (1)
p=-= q:l) jelebnt no
+M__ (1), 2
Moo ) (4.2%)

q

o

i < 1 ‘e < e - 3 o
where umn and u are the turhulent velocities of the inflow and the

R - PRSI SUUPE TR NS
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wake, respectively, and it is assumed that: (1) no wake is overlapped

with another, (2) the function Rect(t) is given by

Rect (7)) = {l lti

{0 otherwise , (6.29)

<1

and ¢t and w are random variables for the position and width of
qpm qpm
the Rect(:) function whose probability density functions are given by

the following:

1 i
pr(tqpm) [ZA ltqpml £
0 otherwise , (4.30)
and
={ 1 \ . .
pr(wqpm) iaz-il °1 < Jqpm < -2
(0 otherwise , (4.31)

where 4§, Al' and 3, are determined so that no overlap among wakes
-
occurs, (3) the function u;n(f) is the turbulent velocity in the wake
th . ; : . th th
of the q inlet strut interacting with the n~ segment of the m
. i - - s
rotating blade, (%) E{umn(f)}= ;{uil(t)} =0 for allm, n, k, ¢, and

q, (35) ugn(t)'s for 9 = 0,....,5-1 are statistically independent of

: - ; . . .
each other, (6) the correlaticn Zunction of umn(r) and uia(r) is given
L

by Eq. (4.20), (7) the correlation function of u;n(t) and ugl(r) is

given by
:—\(3) F (3)
aq = -97(1)!'—' ~ - = &—_2 ‘y q 2
Rz =& 72500 - =) Ty (D7 (e3D)
where
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U,a 32 R R, -
Fz(u) = [5 ' J cos“3 + mg :l sin23 Sinz(ﬂa + 241%:21) ,
w oW ‘{ﬁ:\‘-
ww (4.33)
- 2
E (o) = c0523 + cos(Da + ZI—Qg-—ﬁ-)-)sin"ﬁ . (4.34)
and
2 U232 Rpp v2 Ry 32 RORG 27 (k=m)
o] (a) = DF v + T T 2 \.OS(QG + —) ’
2 RN B TR B 2,2 B
ww wiw wiw Yo'y
(4.35)

(8) the function an(r) is a deterministic function due to the steady

circulation and mean velocity defect of the upstream strut, and

(9) the variables ¢t and w are statistically independent for all
qpm qpm

q, p, and m.

Now consider the correlation function of the upwash which is

given as
@ S-1 .
uu _ e o : . 1ars 1eil
R () = {1 - =z (E{Rect 1ME{Rect 2')Iamnkl(u)
p=-= q:O
®  S-1 @  S5-1
+ I L £ z  E{Rect 1}ElRect 2} x
plz-an q1=0 pzz-a q2=0
: s 9,4, *
{ i b S 3 ) R - 3}
‘nhnéf) * qmnkL(I)Jqlq,’ * “‘an(r)xkl(k+q)' ’
(4.36)
where I7p, 2-q, oo
£, T T - —— ==+ 0t pym.
Rect 1 = Recz ! ~ S 3 301 o, (4.37)
and 2-95 2705 2oy
G I TR TS Tk
Rect 2 = Rect! - —=— (4.28)
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By taking the expectation of Eq. (4.36), one obtains
ﬁuu ( ) = {l - ; SEI' *( 2mp  27g L 2mm,
mnki T T Lgn T TROC 2S5 B
p=-m q=0
27p 2n 27k,
+ gz(r +a - 2 ?ﬁ? 7§7))
© 5-1 @ S-1 27p 2n1q
1 1 2mm
v T b - —
* ;_ao Z=O i—oo E: g (L Y as * BQ) -
PIT7" 9179 P>
27p,  2mq
2 2 2k v Wil
Sl(r ta - —=- 55t 30! Rmnk“(a)
S-1 a9 ® @
+ I Rmnkl(a) L “
q=0 p1=-<» p2=-oo
(r - 2ﬂpl _ 27q ZWm)
8n'T 2 :S B2
27y
"2 2-a 2=k
A N
*
+ an(T)MkL('+u) , (4.39)
where
gn(') = fo 17 2 52+A
1 | 2 |
N . . A
Ta(a, -3y m2 T TEE L ‘-zﬂ;.‘l;AZA
1 2( 1 1. 1 .
LT tONR v CVL R EEOS REE ST T a,)1
271
dp=a 2 it 2 8,-38
1 T < -3
(4.50)

Zxpanding the funcrions gj(r) and M*n(-) in a Fourier series,

3

£q. (4.39) Y“ecomes




where

and

where

Now,

e
~4

© * . 22mp3 .
ﬁ:zk (z,a) = {1 - a(p)e-J' B pS-T

p:-m
2-mps .-
PSS e S (T4
- a(p)e‘ 3 ?
Y E *
+ ° < a(pl) a{pz)
&L

pl—‘.—w p')s—:n

-

:2°S, o R
Jie(kp,ymmp )45 (p, = )T+, S Il
ed "B P2TTP 2771 2 )Rnnki(")

s-1 qq > T ; (p,)
+ IR (2) I I ¢ "l o«
mNL 4 _ n {
q=0 P1=-m pz_—m
sr219, ) 27 )47 (p=p. ) T+p . ia}
eJ‘—gﬂqu a, +?r\mp: apy ) *2(p,-py ) T,
@ » *
+ r 051 5052 &
_ v n <
sl——«n 52.»
,:275(5 -3 m)+2:(kn -mp, )+ (p,-p,) T+p, a;
el T3 ‘EpfTS TR R TAR /TR TR AT, .
(4.41)
@ S-1 @ oA
T I g (r - 2:0 _ %jc) - a(p)erS“\ (4.42)
n ‘ Iy n
pz_m q=0 pz—m
o » 2~q
2"3 2‘30 - (P) JP:-(T - T") 7/,
b gn( -3 SS) z-. <, e %S , (4.43)
p=-;n p---‘o
» 2=
- (s) 3sS (7 + == ,
) = =z - 3% , 4.5%4
M () b "e (4.44)

M (7) is assumed to be a perisdic function with a period 27/SI.
mn

taking the z-Fourier transform 2f Ig. (4.41), one obtains
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* 2mp$S N
- 3 ———L — 4 I f 3
uu (p) if pSati, ii

= - .
Smnkl(r’w) (1 p:-w n )smnkz(“)
;27kp$S \
_ (p) j{=—==—+ psat} _ii -
E a, ’e B Smnkl(w-Pb")
p__tx:
@ @ *
+ I z a(pl) aEPZ) x
ej{%(kpz-mpl) + S8(py-py)thgid (w=p.S2)
mnk2 oo
® © *
s 5 c(qS+P) C’gp) <

e L q=—m

27 .
{5 (k-m)p - mqS + qS2t} ww ~
e "B Smnkl(m pi)

*
rop0s) 08
= n 2

1

. 1278 . . _ "
I 15 (s % 51+ (s 51)5“"5(u-szsa) , (4.45)

ww _ 3 - c a9
where smnkl(w) is the 2-Fourier transform of ﬁhnkl(a) for all q,

assuming Rggkl(a) is the same for all q=20,1,...,5-1.




CHAPTER V

ACOUSTIC INTENSITY SPECTRUM

DUE TO INTERACTION OF A ROTOR WITH TURBULENCE

5.1. Introduction

In Chapter II, the acoustic radiation intensity from rotating
blades in a free space was obtained and was related to the power
spectrum of the lift of rotating blades under the condition that the
distributed pressure on each blade is compact. In Chapter III, the
impulse response function of a blade was derived so that the 1lift can
be obtained in a time domain and in a frequency domain. In Chapter
IV, the correlation function of the upwash to the blades and its
spectrum were derived.

In the present chapter, the results in Chapter II, III, and IV
are combined so that the acoustical intensity spectrum can be
obtained. In deriving the explicit expression for the acoustic
intensitv, it is shown that the retarded time difference of the lift
among blades can be neglected. The condition necessary for this

demonstration to be valid s more relaxed than that for the dipole

domination over other radiation sources.

5.2. Retarded Time Difierence

Since the results in Chapter IV were obtained at the time

associated with the emission of :the acoustic radiation on blades,

those results cannot be substituted into the results in Chapter II
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where the correlation is taken at the observation time when the radi-

ation reaches the observer's point. In other words, the correlation

function for the blade lift R(pgq)(',n) is obtained at two different

times t - D__/a and t + a - D, /a.
mn K

Now consider under what condition the followingz approximation is
attainable so thart the retarded time difference can be neglected

in the correlation function, Héié?)(f,l), in Eq. (2.36),

By Tavlor series expansion, one can get the following expansion
Yy 3 P 4

of lmn(t - Dmn/a),

r.
Dxm dz__(t - 5/

- —_—) = - L + on
2 (c ) 2 (t )

. A mn., . .
R _sind cosii{t- —)+>
mn a

o A}
't + error terms .
a

(5.2)

Hence, if it can be assumed that the typical time scale of lmn(T) is

very large compared with Rmn/a or, equivalently, that the upper cutofi

frequency of Zmn(r) is much lower than a/Rmn’ then the approximation

in Eq. (5.1) is attained. This condition is relativelv relaxed when

compared with the one for the dipole domination over other radiation

{
sources such as was given bv Goldstein [6]:

L
> TGEERE (5.3)
r
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where tm, L, and Mr are a characteristic time for the source fluctu-
ations measured in the moving frame with a convected flow, a charac-
teristic source dimension, and a Mach number of the bodv speed
component in the direction of the observer, respectively. Furcther,
fans with low rotational speed and small radial size are more likely
to satisfy the condition for the approximation in Eq. (5.1).

Since lmn(t - Dmn/a) is given by the convolution integral in
Eq. (3.15), then the following equation is obtained so that the
condition required for the approximation in Eq. (5.1) is imposed on
either hmn(r) or umn(r).

@ @

[ hg (=mu__()dn = [ h_ (2 (s=n)dn . (5.%)
- -l
Thus, one can obtain the condition for the approximation to be imposed
on h T) or u t); i.e., the typical time scale of h T) or u T
an () an (¢ ) 4% on 50 m( )
should be much larger than Rmnsina/a or equivalently, the upper cutoff
frequency of hmn(r) and umn(r) are derived in the same fashion as was
done in Eq. (5.2). This condition is easily obtained when the
observer is near the axis of the rotor, and is relaxed when compared
with the condition of dipole domination, (5.3).
First, consider the condition on unn(r). using its typical
length scale L and its convection velocity R 2, where U, << R 2 is
© Tan 3 mn
assumed. According to the condition, one obtains the following

expression:

L “ R L sino (5.5)




Thus, low rotational speed and/or small ratio of rotor radius and

turbulence length scale are required so as to obtain the approxima-
tion. As mentioned before, the condition, (53.3) is more likely to be
satisfied in water than in air. When the observer is at » = 0, the
condition is automatically satisfied, i.e., there is no retarded time
difference for the lift distribution on the blades.

Next, consider the condition on h__(t). Let ¢ be the upper

mn cut :

cutoff frequency of hmn(r), where fcut is defined by -3 dB = 10 log

{8 (27f )/H (0):. Then, the condition to be imposed on h () is
mn cut mn mn

obtained as follows,

Zre CR_3 sing (5.9
mn

(5.6) shows that low rotational speed and/or low aspect ratio

rotors are most likely to satisfy the condition.

Q

Furthermore, for the time derivative of znn(r), the results for

umn(r) and hmn(r) are applicable based on the following equations:

3L (1) © 3h__(n)

mn _ mn - -
e T umn(‘ n)dn , (5.7)
and
3L (1) ® 3u__(n)
mn _ . mn
BT ;- hmn(' 1) n dn . (5.8)

-

In the present studv, either one of the results (5.5) and (5.6),
or both of them mav be assumed 0 bYe satisfied bv the rotor such that

the rotor is operated at low rotaticnal speed, the flow fluctuation

length scale is large compared with the rotor radius, and the cutoff

frequency satisfies (5.6). 1In the subsequent derivations, the
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retarded time difference is neglected in the spectrum analvsis for the
rotor in a free space. It should be noted that this assumption is
imposed only on the retarded time difference associated with the lifc
on a blade, while the retarded time difference associated with the
distance between the rotor and the observer is included in the present
study as was done in Chapter II.

5.3. Acoustic Intensitv Spectrum from a Rotor
Operating in Free Space

By neglecting the retarded time difference, under the assumption

discussed in Section 5.2., Eq. (2.36) becomes

a(p D Ly - 2P (q)ql'l (¢ - Z 4

mnki a mn nnk L a

+ 22 (@D gil

r
(bt = =,3)
on L4 a

“mnki

(P) (Q)QA- Z'(

~ r
+ 34 1f Kl mnkl

r
t - =,2)
a

(P (q)qh 2

mn &L ank <

(¢ - 07 . (5.9)
a

Then, taking the a-Fourier transform of Eq. (5.9), and using Eq.

(3.19) through Egq. (3.23), cne obtains

(p Q Juu r
-—‘— (.i‘."..~..} . - = AR A
mn&l(t Vi) 1 ) ﬂi( )Dmnxl(t a,n) Rn R2 x

:Jze(P)a(q) " -::(P)E(Q) . ‘e(p)f(Q) B
: an K " "mn Tk2 “Fan k2

~f(p) (q).
an %k . (5.10)
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Utilizing Eq. (5.10) in Eq. (2.47), and replacing t - r/a with t, one

obtains

1 g N B N = e

53 I o 1 %

5?5,(1',4>,t,w) = g
3217a !'—D m=l n=1 k=1 1=1 p==® q=-®

27

* 2T
~q Q) ap o7 (kg-mp)

H (w q“)sz(m q”)ARn_Rle B

T
uu - i(q-p) Qe+s)
Smnki(t’w Qe 27 x

2 (p)_(© 2:(p) (@)
{(m—qQ) ®on Sky T & fmn fkl

v ae(P) (@) el (P ()
- (w q“)“fmn e ¥ (u-q,.)..emn fki }

(5.11)

Taking the time average of Eq. (5.11) over the period 2%/3, under the
assumption that de(r,a,t,w) is continuous and finite with respect to
t, introducing the typical section idea such that Hmn(u) = H(w) for

all m and n, and replacing a blade with a dipole, one obtains

[$4]

(2R.)

i

S’?(r,j,t,w) =

i t1 8

H(ump2) |2 x

13

Y

32:a7="r" p

-—0

{(A-pi)z(eép))z + (fép))z} x

.3 3 2 (kem) u
(I I e 3RiRTRIg ﬁ(d-p;)} . (5.12)
a=1 x=1 w

Before utilizing 2q. (4.13) in Za. (3.12), let us consider the

vy,

non-dimensional parameters of Sﬁkza). 30 that functionallv the power




spectrum S:;(») can be expressed as

a
w0
£~

uu
Smk<d)--

3 m X
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2
u
2

e

Y. (5.13)

Now, utilizing Eq. (4.13), Eq. (5.13), and Eq. (3.13) in Zq. (5.12),

and non-dimensionalizing the result, vields the following:

, S 3
Syp (T>9,8,0) £, e T S YL
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NN
where
. Y3 B ouoon) o2 3B saimwl®s Browepd)
B2 N 2 — t Loes SaiT 3 T TR
it 2 o=l k=1 S T

~ . a2,...2.1/2
and RT" = 1(RT”) +U3; is assumed.
When taking the turbulence contraction and elongation into

account, one obtains
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Acoustic Intensitv Spectrum from Open Duct
via Free Rotor Model

This model predicts the free-space radiation and hence may be
regarded only as a source model. Because of this simplicity, the

effect of the duct is not involved in the computation. As pointed out

by Lansing [43], this model appears to overestimate greatly the
radiated noise, and to have a completelv different directivity pattern
than his exact theory claims. However, this model can be used for
diagnostic purposes on fans.

Again, neglecting the retarded time difference, as was done in
Section 5.2., and utilizing Eq. (4.45) in Eq. (5.11), Eq. (5.11)

becomes as follows:
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Now, taking the time average of Eq. (5.17) over 27/2, one obtains
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, for

where it is assumed that the terms eép), egq), fip) fiq)

(q@ - p) > S are negligible, and that Sgp (r,9,t,w) is finite and .

SR,

continuous with respect to t. In fact, as (Rnﬂsin@)/a decreases the

above assumption becomes more accurate.(See Eq. (2.30) and Eq. (2.31).) .
Now representing a blade by a dipole, and introducing the typi-

cal section idea for the impulse reseponse function of the blade, one

obtains
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Utilizing Eq. (5.13) in Eq. (5.19), and non-dimensionalizing the

result, one obtains
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When there is no strut, setting a = b = 0 for all s, in Eq.
(5.20) and Eq. (5.21), yields an equation equivalent to Eq. (5.14)
Eq. (5.16), respectively.

When the observer is at » = 0, then Eq. (5.21) becomes
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CHAPTER VI

NUMERICAL RESULTS

6.1. Introduction

In Chapter V, the time averaged intensity function of the
acoustic radiation from rotating blades was derived by replacing
blades with rotating dipoles. This derivation was done under the
following turbulent inflow conditions: turbulent ingestion with no
inlet strut wakes, inflow turbulence elongation and contraction with
no inlet strut wakes, and turbulent ingestion with inlet strut wakes.

For the present derivation, a blade was assumed to be acousti-
cally compact. A rotating dipole model was pursued so that the effect
of the dipole rotation can be accounted for explicitly. Sears' func-
tion was regarded as an impulse response function of a blade, so that
the analysis was done in time and frequency domains. There was no
blade-to-blade interaction to be included, such as that developed by
Kemp, et al. [1]. Further, the dipole source was assumed to be
predominant over other radiation sources, so that the retarded time
difference among the lift of blades can be neglected. It was assumed
that the inlet struts do not aifect the sound propagation and that the
distance from the rotor to the duct exit is much shorter than the
sound wavelength so that duct effects on propagation are negligible.
Finally, the turbulence was assumed to be Ir>zen, homogeneous, and

isotropic.
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In this chapter, computations are done for the results in

Chapter V such as Eq. (5.16) and Eq. (5.22) by changing the number of
struts and rotor blades, the spacing between struts and a rotor, the
observation angle, and non-dimensional parameters such as UB/Ai2 and
RT/Ai. In particular, the variation of these non-dimensional param-
eters is made around an axial flow velocity of 03 = 30 m/sec, a rotor
radius of RT = 0.30 m, a rotor rotational speed of 2 = 220 rad/sec, an
inflow turbulence length scale Ai = 0.15 m and 0.017 m, and a wake

turbulence length scale Aw = 0.0068 m. '

6.2. Numerical Results

Figs. 3, 6, and 7 show the non-dimensionalized (SFF(r,ﬁ,t.u)> ,
dependent on the non-dimensional parameters, U3/\iQ and RT/Ai. These
figures show that as U3/Aiﬂ decreases, the level of the blade-passing
frequency and its multiples increases, and as R_r/.\i increases those
levels also increase. Further, as R.r/;\i increases, the overall level 3
increases.

Hence, it is clear that the kinematic relation RT/Ai cannot
explain fully the spectrum profile without the dynamic relation
U3/Ain. The effect of U3/Ai2 on the spectrum is the same as that

obtained by Homicz [8]. However, the effect of RT/:‘.i on the spectrum

. for constant U3/Aiﬁ is the opposite of that claimed by Mani [15].
This is probably due to the fact that Mani did not consider the vari-
ation of UB/AiQ when he varied R_L,/.‘.i as a parameter. Further investi-
gation of this matter is necessarv.
Further, as the rotational speed increases, the bandwidth and

the level at the blade-passing frequencwv and its multiples are
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increased, and as the axial flow velocity increases, the blade-~passing !
i

frequency and its multiples appear clearly. The above phenomena can

be observed through the variation of U3/AiQ in Figs. 5, 6, and 7.
Fig. 8 shows that as B increases, the bandwidth of the peak at

the blade~passing frequency and its multiples increases. In this

example, as B is increased from 3 to 9, the width at the blade-passing

frequency has approximately triples. In this figure, the horizontal
axis is w/BR. This tendency is mentioned also by Homicz [8].

Figs. 9, 10, and 11 show the observer angle dependence of the
non~dimensionalized ($0y(r,:,t,u7>. Fig. 10 shows that the domination
of the blade-passing frequency is reduced as the observer angle
increases. The extra wiggles in Fig. 10 are due to the dipole rota-
tion. This shows that the disk model of a rotor is not sufficient
even when the rotor radius is about 0.3 and its rotational speed Mach
number is about 0.2.

In the computations in Figs. 9 through 11, the surmation in
Eq. (5.16) is done for the first five terms after observing that the
computed result from the first seven terms is not different from that
using the first five terms.

Fig. 12 shows the influence of the kinematic contraction and

elongation of the inflow turbulence on the noise spectrum. The elon-

gation and contraction produce a large effect on the spectrum as
reported bv Hanson [16]; althouzh Hanson's elongation and contraction
are Jone bv the statistics of the eddies chopped bv rotating blades. '
As shown in Fig. 12, the elongaticn and contraction rates, 2.0 and
0.5, respectivelv, create peaxs at the bdlade-passing frequency and its

multiples even if there is no high level of peak with no contraction
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and elongation.

Figs. 13, 14, 15, and 16 show the non-dimensionalized
‘$,r(r,¢,c,u» for the rotor operating in strut wakes. In this
example, there is no clear influence of the wake turbulence on the
spectrum profile. However, the effect of the mean flow deficit due to
the inlet struts is pronounced unless the number of struts and rotor
blades are chosen such that the least common multiple of B and S times

Q is in the cutoff range of Sears' function.

In Figs. 14 through 16, the wake position function Rect(t) is
assumed to be deterministic, as shown in Fig. 17. The assumed mean
flow deficit profile behind the struts is shown in Fig. 18. The wake
turbulence convection velocity Ug is set to be U3 - uc/2, and the
turbulence intensity variation according to the distance from the

v o
trailing edge of the upstream strut is given by ((u"')‘)l/2

3=
0.08(2x/c + 0.05)_0'35, where x is the coordinate along the airfoil

/U

measured from the trailing edge, and ¢ is the length of the airfoil,

see Ref. [44]. 1In the computation shown in Figs. 14 through 16, no

consideration is made of the wake turbulence length scale variation
with changes in rotor-strut spacing d. In fact, the length scales,
Ai and Aw’ are too small to represent a blade with a dipole; indeed,

the dipole domination mav not even be attained.
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1.0
T
-A 0 A
where
A = 0.68cic, (x/e=0.35) 1M 2/sa
CD = airfoil profile drag coefficient
¢ = airfoil chord length
X = coordinate along airfoil measured from midchord
Fig. 17. Wake Position Function Profile
M(T)
u
c
-a A T/S2
——t T
..... —/ La e
where
. 1/2 n il .
u, = b3(e.84CD Yeos3/ (x/¢-0.2) ¢ = airfoil chord length
ol
A = 0.68c{CD(x/c~0.35)}1/"/52 CD = 1irioil profile drag
coeificient
B = ZAuC/(A+21/SR)

x = coordinate along airfoil
measured from midchord

Fig. 18. Mean Flow Deficit Profile
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CHAPTER VII

CONCLUSIONS

The time averaged intensity density function of the acoustic

radiation from rotating blades was derived by replacing blades with

rotating dipoles. The following conclusions can be drawn from the

derivation:

1.

The rectilinear model of a rotating blade row is applicable only
for the frequency range such that w>>Q; see Eq. (2.25).

The effect of the variation of the distance between the observer
and rotating dipoles can be neglected when RTﬁsino/a << 1; see
Eq. (2.26) through Eq. (2.28). However, care must be taken as
exhibited in Fig. 10.

The retarded time difference of the lift among blades and its
derivative can be neglected when the dipole source dominates over
other sources, the speed of the rotor is low, and/or the aspect
ratio is low; see Eq. (5.3) and (5.6).

Two nin-dimensional paranmeters, UB/LiQ and RT/Ji, govern the

prorile of the noise spectrum. As UB/iiﬁ decreases, the level of

the blade-passing frequencvy and its zultiples increases, and as
R,r/.\i increases the level also increases; see Figs. 5, 4, and 7.

The non-dimensionalized time iveraze acoustic intensity density

102,20 . 3
function is proportional to (fu®i"/a")(R.1/a)~ under the condi-

tion that other non-dizensicnal paraceters are fixed:; see




10.

11.

Eq. (5.22).

The effect of the wake turbulence can be reduced by reducing the

wake width, increasing Ug/lwﬂ, decreasing RT/AW, decreasing the

number of struts, and reducing the ratio, (uw)z/(ui)z; see

Eq. (5.22).

The number of struts and rotor blades should be chosen so that
the least common multiple of S and B multiplied by 2 is in the
cutoff range of the Sears' function in order to minimize the
effect of the mean flow deficit; see Eq. (5.22).

The acoustic intensity at the off-angle from the rotor axis is
not stationary even if the inflow turbulence is frozen and
homogeneous; see Eq. (5.11). The acoustic intensity from the
rotor with struts is not stationary even at the rotor axis: see
Eq. (5.22).

Increasing B, and/or increaring 2 under the condition that U3/hiQ
is fixed increases the bandw .th of the peak of the blade-passing
frequency and its multiples; see Feg. 8.

To find the effect of the rotor strut spacing on <S0?(r,$,t,u» .
consideration of the wake properties and mean flow deficit
profile with respect to the spacing is necessarv.

As was derived in Eq. (5.22), (SPP(r,;,t,u)> is exrressed by the
terzs due to the inflow turbulence and wake turbulence, and the
term due to the mean flow deficit. Hence, we can deal with the
<S}P(r,3,:,uf> due to the inflow turbulence, the wake turbulence,
and mean flow deficit separatelv, although this separation is

hypothetical,
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APPENDIX I

Given Eq. (2.17) as follows:

A BN 6'(T—t+Dmn/a)
(rio,0) = - g% [ I T (270D )oR { ™
- m=]1 n=1 mn
6'(r—t+Dmn/a)
SRR S PR (AL.1)
Dmn
where

~ - i ») -
Dmn r Rn51no cos(lt + ém) , (AL.2)

and integrating Eq. (AI.l) with respect to 1, one obtains

(r,5,8) = = T § [ WL W Son ) 4 o)
Bl b m;l n;l t aDmn I;Tt 5Dmn ’ D IJ ’
1+ asT a(l + aBT)Dmn nn
(AI.3)
where
3D 3D

_ .2 an ,Z an

gmn = zmm Rn3¢ + 1037 (AIL.4)

and the relation, d{3(¥(z))}/d? = (d5/dv)(dz/d¥), is used. Consider-
ing the terms in the parenthesis of EZg. (AI.3), one obtains the

following equation:

3 ( gmn N gﬁn . 3 - g::n T gﬂn EDmn
5T 3D / 2l r:T 3D : 3D 3T
on D mn 2 mn
‘ a(l + asr)Dnn =n all + a‘t) rrall+ a&r)
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where Dmn is approximated by r, due to the assumption that Rn << r for

alln=1,2,...,N and because the time history of the pressure is not

sought, Taking the t-Fourier transform of Eq. (AI.S) and taking the .

ratio of the 1% and 3rd terms yields

= o *
ar\G(w) A(w)}
G(w) ’
2
T
1 abmn <
- =¥ Lo_mmy o, i
where G(w) ?ﬂgmn(r)} and Aw) = F(1/(1+ ey ) Now, by
I
utilizing a Taylor expansion on A, one obtains ,4
¥
3__ -1 Pon (Pam ¥
{1+ rrraii L - =+ 53T j ...... s

The above equation shows that the steady state component has a %
magnitude "1". Therefore, because BDmn/aat << 1 (since a low speed 1
rotor is considered here), G(w)*A(w) = G{w) for all w. Hence, the
absolurte value of the ratio of the lst and 3rd terms becomes wr/a.
If wr/a >> 1, the 3rd term is negligible. The condition wr/a >> 1

defines the acoustic far field.




APPENDIX II

Lowson [7] derived the following Fourier coefficients of the
t
amplitude modulation for 3rd and 4 h terms in Eq. (2.25), under the

condition bm = 0,

R Q
- / i n i
cosQ(t Dmn,a) _ ; JpJp(p—a—-SIHQ) .
Rnﬂ 3 pe—ce R 2
Iy : -’ - =
(1 + —sind sinl(t Dmn/a))

ejp(;’zt + n/2) . (AIL.1)

Taking the phase Pm, of the amplitude modulation in Eq. (2.25) into

-

account yields

R 2
) . . n
o Q - + - {
cos{a(t Dmn/a) >m; _ : JpJD(p—Efs1no) )
R 2 “ R 2

(l + -2 5ine sinia(c - D /a) + ? }]3 p===
a mn m

n .
—s1ino

a
ejp(ﬂt+—w/2 + bm) .

(AIL.2)

Now, consider the Fourier coefficient of the other amplitude

modulation in Eq. (2.25), for instance, the Ffourier coefficient of

Taking the time

’

. =2
(1 + (R_3/a)sin> sinil(t - D__/a) + 3 )",
n an m
derivative of (1 + (R _3/a)sin> sinid(t - D_ /a) + » })-l vields
- n an m .

"
N R“sin: siny

d—dE-‘l + (R_2/a)sind sinvi ! . - o ,
’ n’ . .
ail + — i sxn() (AII.3)
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where the following relations are used:

d dy dT d

— R — e

dt = dT dc dy ° (AI1.4)

Yy = 2t - Dmn/a) +o (AIL.5)

and

R Q
T=Q(t - r/a) + bm =y - —g—sin¢cosy . (AII.6)

By comparing Eq. (AII.2) with Eq. (AII.3), one obtains the

following expansion:

R Q L R D
. Y - ‘ -1 n__.
1+ Ta S0 sint2(c - D /a) + 0 3) pEde(stxm) x

ejp(Qt + /2 + Om)

(AIL.7)
where the steady state Component can be computed by
Q 2n/Q Rnn -1
3 [ @+ —5 sino siny) Tde = 1 (AI1.8)
0
R Q

X , , -1
since dy = (1 + -E—sln¢ siny) “dt.
Therefore, one obtains

R D
(1 T sin® sin‘2(c - D 'a) + & }) =
a an m

s
= T z
p=ﬂ q L. .
R 2 R 2 ; .
Jp(p ; Sina)Jq(q ; Sin:)E‘(p+q)("t MR >m)

(AI1.9)
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Now, consider the Fourier coefficient of sin{2(t-D /a)+d 1}/
R Q mn m
(1 + —g—sina sin{2(t - Dmn/a) + @m})z. Since it can be expressed by
A \
sin{Q(t Dmn/a)+¢mr . 1
R 2 R @ ’

1 + 2 sinesin{(¢t-D  /a)+® } 1 + —P—sinssin{Q(t-D /a)+d }
a an m a mn m

the Fourier coefficient can be obtained through coefficients for each

term in the above.

R Q
Taking the time derivative of sin{Q(t—Dmn/a)+®m}/(l + —g—sino

r rq - s
sinf{Q(¢ Dmn/a)+¢m}) yields

gc ( Rsfm’ )= °‘§°§V , (AII1.10)

e

1+ —g—sinosinY (1 + —E—sinasinv)3

where Eq. (AII.4), Eq. (AII.S5), and Eq. (AII.6) are utilized.
By comparing Eq. (AIL.10) with Eq. (AII.2), the following

expansion can be obtained:

R 2
o .
sinvy - ; _ I, a ing) ejp(Qt + /2 + ém) "
R 7 S R2
1+ —; Sin¢siny p= —Z——sintb
(50p - 1), (AII.11)
where the steadv state component is obtained by
2 373 sinv 1 37
3 = dt = 5= [ siaydy = 0 . (AII.12)
0 1+ Tn'sin%siny 0
a

Therefore, utilizing Eq. (AII.9) and Eq. (AII.12), the

following expansion is obtained:

e - e
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D
sin{Q(r - 20
(t rel bm} © ® 8 -1
RnQ D = I z R—P_-Q x
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(AIL.13)




The expected value of Rect(

integration:

g(t) = {i Rec:(31ﬁ513)pr(b)pr(w)dbdw ,

where
1
Pr(®) = oy
0
1
p (W) = |——
r 2”4

APPENDIX III

t+5bH
w

Ib] < a

otherwise ,

4

I8

w < AZ

otherwise ,

) is computed by the following

(AIII.1)

(AITI.2)

(AIII.3)

and b and w are random variables for the position and width of

Rect(t), respectively.

Integrating with respect to b and w, one obtains

g(t) = (o0

where AZ - 4, = 2% is assumed.

aduibiciaddn,

Ay+a > el > A -4

(AILI.4)
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Now, consider the special case such that pr(b) = §(b) and pr(w)a

§(w - wc). Then, g(t) becomes
g(t) = Rect(t/wc) . (AI1I.5)
Eq. (AIII.S) represents the case where Rect(t) is a deterministic

function whose width and position are 2wc and zero in the time axis,

respectively.

————-



DISTRIBUTION LIST FOR UNCLASSIFIED ARL TM 83-27 by K. Ishimaru, dated
January 25, 1983.

Commander

Naval

Sea Systems Command

Department of the Navy
Washington, DC 20362

Attn:

(Copy

Naval
Attn:

(Copy

Naval
Attn:

(Copy

Naval
Attn:

(Copy

Naval
Attn:

(Copy

Library
Code NSEA-09G32
Nos. 1 and 2)

Sea Systems Command
S. M. Blazek

Code NSEA-55N

No. 3)

Sea Systems Command
A. R. Paladino
Code NSEA-55N

No. 4)

Sea Systems Command
F. B. Peterson
Code 56X

No. 5)

Sea Systems Command
T. E. Peirce

Code NSEA-63R31
No. 6)

Commanding Officer

Naval

Underwater Systems Center

Newport, RI 02840

Attn:

(Copy

Naval
Attn:

(Copy

Naval
Attn:

(Copy

B. J. Myers
Code 36311
No. 7)

Underwater Systems Center
Library

Code 54

No. 8)

Underwater Systems Center
P. Corriveau

Code 3634
No. 9)

Officer-in~Charge

David W. Tavlor Naval Ship R&D Center

Department of the Navy
Annapolis Laboratory
Annapolis, MD 21402

Attn:

(Copy

J. V. Pierpoint
Code 2741
No. 10)

David W. Taylor Naval Ship
Attn: J. W. Henry

Code 2741
{Copy No. 11)

Commander
David W. Taylor Naval Ship
Department of the Navy
Bethesda, MD 20084
Attn: W. B. Morgan

Code 15
(Copy No. 12)

David W. Taylor Naval Ship
Attn: Library

Code 1505
(Copy No. 13)

David W. Taylor Naval Ship
Attn: J. H. McCarthy

Code 154
(Copv No. 14)

David W. Taylor Naval Ship
Attn: M. M. Sevik

Code 19
(Copv No. 15)

David W. Taylor Naval Ship
Attn: W. K. Blake

Code 1905
(Copy No. 16)

David W. Taylor Naval Ship

Attn: F. S. Archibald
Code 1942

(Copy No. 17)

David W. Taylor Naval Ship
Attn: J. T. Shen

Code 194
(Copy No. 18)

David W. Tavlor Naval Ship

Attn: A. F. Kilcullen
Code 1962

(Copy No. 19)

R&D

R&D

R&D

R&D

R&D

R&D

R&D

R&D

R&D

Center

Center

Center

Center

Center

Center

Center

Center

Center

t




DISTRIBUTION LIST FOR UNCLASSIFIED ARL T 83-27 by K. Ishimaru,
January 25, 1983.

Office of Naval Research
Department of the Navy
800 N. Quincy Street
Arlington, VA 22217
Attn: R, Whitehead

Code 432F
(Copy No. 20)

Office of Naval Research
Attn: M. M. Reischman
(Copy No. 21)

Defense Technical Information Center
5010 Duke Street

Cameron Station

Alexandria, VA 22314

(Copy Nos. 22 to 27)

Applied Research Laboratory

The Pennsylvania State University
Post Office Box 30

State College, PA 16801

Attn: R. E. Henderson

(Copy No. 28)

Applied Research Llaboratory
Attn: B. E. Robbins
(Copy No. 29)

Applied Research Laboratory
Attn: G. C. Lauchle
(Copy No. 30)

Applied Research Laboratory
Attn: J. A. Macaluso
(Copy No. 31)

Applied Research Laboratory
Attn: J. M. Lawther
(Copy No. 32)

Applied Research Laboratory
Atrtn: S. Hayek
(Copy No. 33)

Applied Research Laboratory
Attn: W. C. Zierke
(Copy No. 34)







